Overview New (school) year, new blog series! Now that society is crawling back towards some semblance of "normal," I'm making a valiant effort to get back to more regular blogging, and to try to keep myself accountable, I'm starting a topical series that I'm calling "How do we know...?" (for now anyway). In this first part of the series, I want to focus mostly on one of the most interesting yet cryptic (and thus often controversial) parts of temnospondyl paleobiology: their lifestyles! We'll start with the basics - how do we know what kind of environments temnospondyls lived in - and go from there. I'm also hoping to feature a lot of cool temnospondyl paleoart because there's more and more of it coming out! All of the above art is by Gabriel Ugueto (website here; Twitter here), who has done a ton of art for a book that hopefully will come out soon ("Journey to the Mesozoic").
Title: New publication (First record of the amphibamiform Micropholis stowi from the lower Fremouw Formation (Lower Triassic) of Antarctica Authors: B.M. Gee, C.A. Sidor Journal: Journal of Vertebrate Paleontology DOI: 10.1080/02724634.2021.1904251 General summary: Following the end-Permian mass extinction (252 mya), life on Earth hit a big reset button. Many major groups suffered substantial losses in biodiversity or went entirely extinct, being replaced by other groups that were rare or non-existent before the extinction. The temnospondyl amphibians are no exception - almost all of the characteristic groups found in the Permian are entirely wiped out, and that ones that survive it are found in very low diversity and are restricted to mostly a few localities that would have been at high latitude. Concurrent with this is the observation that a lot of the first temnospondyls that appear in the Early Triassic are rather small compared to their Permian predecessors or their later Triassic successors. One of these is a holdover from the Permian, the amphibamiform dissorophoids. There is only one definitive amphibamiform in the Triassic (there were over 30 in the Permian), Micropholis stowi, a species known from South Africa for over 150 years now. Our study reports the first record of M. stowi from outside of South Africa, in similarly aged Early Triassic rocks from Antarctica. This further solidifies the similarities between the Early Triassic of Antarctica and South Africa, but it still comes in the face of somewhat stark endemism otherwise - most of the temnospondyls known from the southern hemisphere at the time are found in only one spot, despite there being a rich record of this group in places like South Africa, Australia, India, and Madagascar. This is also the first paper from my postdoc and sets the stage for some of our in prep projects on other newly collected material from Antarctica!
Title: Description of the metoposaurid Anaschisma browni from the New Oxford Formation of Pennsylvania Authors: B.M. Gee, S.E. Jasinski Journal: Journal of Paleontology DOI: 10.1017/jpa.2021.30 The amazing art above was done by Sergey Krasovskiy; you can find his DeviantArt profile here and his Twitter here! The number of metoposaurids is not random - we know that there were at least two individuals preserved at the site based on the number of duplicate elements from the site. General summary: This study provides the first detailed description of metoposaurid temnospondyls from Late Triassic deposits in Pennsylvania. Metoposaurids are well-known for their widespread distribution in the Late Triassic, including in the southwestern U.S., but they have a much scarcer record west of Texas. The east coast in particular was geographically closer to other regions that preserve metoposaurids that have drifted apart over the millenia, like northern Africa and western Europe. The east coast is also the only region in North America where a large-bodied temnospondyl that isn't a metoposaurid is known from (this pattern of metoposaurid exclusivity is not observed anywhere else with decent sampling). While previous people have mentioned the Pennsylvania material and ID'd it, they never provided good figures or explicit justification for their ID, so essentially any reader was left to take them at their word. We formally describe the material, identifying it to Anaschisma browni (best known from Arizona, New Mexico, Texas, and Wyoming), which is not the same species that a metoposaurid from Nova Scotia belongs to, and discuss the importance of providing proper documentation and justification for taxonomic identifications (which are fluid hypotheses, not static facts). While the east coast is much more fossil-poor (this is definitely the best metoposaurid material from anywhere in North America west of Texas), it may also be the only region that preserves the transition from a diverse large-bodied temnospondyl assemblage to one that is entirely dominated by metoposaurids.
Title: New information on the dissorophid Conjunctio (Temnospondyli) based on a specimen from the Cutler Formation of Colorado, U.S.A. Authors: B.M. Gee, D. S Berman, A. C. Henrici, J.D. Pardo, A. K. Huttenlocker Journal: Journal of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1877152
The Red RiverThe Red River is a mostly east-west oriented, eastward-flowing indirect tributary of the Mississippi River, stretching from the Texas Panhandle all the way to Louisiana (over 1,350 miles). It forms the border between Texas and Oklahoma (hence where the "Red River Rivalry" in collegiate football between University of Texas and the University of Oklahoma derives from), two of the most historically productive states for early Permian tetrapod fossils (especially the famed Texas redbeds). Much of our record of North American temnospondyls from this time comes from these two states, with more minor contributions from New Mexico, Utah, and Ohio. Dissorophids, the armoured dissorophoids, are among the best known taxa from these redbed deposits, and in many instances, the entire record of a given species is restricted to one or two states. Whether this is an artifact of the fossil record or an accurate representation of a truly restricted geographic range is often unclear; many taxa are in fact known from only one specimen or one site (the two species of Cacops below are examples; figures from Gee & Reisz, 2018 and Anderson et al., 2020). Land of EnchantmentConjunctio multidens (reconstruction from Schoch & Sues, 2013) is one such dissorophid, known only from two sites (but the same county) in New Mexico. Although New Mexico and Texas are adjacent states, their faunal assemblages were somewhat different, a result of regional geography no longer present that would have created some degree of spatial segregation. Other examples can be found in the trematopids Anconastes and Ecolsonia, only found in New Mexico, or the dissorophid Broiliellus reiszi, which differs starkly from other members of the genus that are known from Texas. Because the Texas redbeds have been so extensively sampled, with at least a dozen other dissorophids known, it can be reasoned that indeed Conjunctio also did not occur in Texas. But does that mean that it was only found in New Mexico? Not necessarily. The rest of the Four Corners region and the midcontinent is less well-explored, probably because the early Permian deposits that yield tetrapod fossils are less extensive. One of the well-known productive localities in the Four Corners region is in the Placerville area in Colorado, where the Cutler Formation (also found in New Mexico) is several hundred meters thick. First reported by Lewis & Vaughn (1965), the assemblage preserves one of the few sails of the dissorophid Platyhystrix (below on right), the holotype of Diadectes sanmiguelensis, a diadectomorph stem amniote (below on left), and a number of other tetrapods also known from other redbeds deposits. Synapsid fans may also know this as the type locality for the sphenacodontid Cutleria.
Terminology: While 'transitional form' or 'transitional fossil' is a commonly used term that even the general public knows (e.g., Archaeopteryx), scientists are moving away from it because it's misleading, suggesting that one animal directly turns into another (one of the most common misconceptions about evolution). In fact, this very rarely occurs (a process called anagenesis), and it does not capture major transitions like the theropod-bird transition or the fish-tetrapod transition. Instead, continual splitting of new species that go extinct is what gradually leads to a shift in a group's anatomy. A given species' suite of features may be transitional insofar as it captures part of this shift, but the species or individual itself is not. Agree to disagreeAs one might expect from a taxon with a weird mixture of features, there is no agreement on the position of Conjunctio in phylogenetic analyses of dissorophids, as summarized on the right. Historically, the phylogeny did not support that they were conspecific (expected recovery as exclusive sister taxa), as they were frequently scored separately due to uncertainty over Carroll's referral (the referred specimen was called the "Rio Arriba Taxon"). It doesn't really help that the holotype (C-D) and the much smaller referred specimen (A-B) differ from each other in cranial proportions, somewhat questioning whether they are actually the same taxon (since Bob Carroll created Conjunctio in 1964). You don't have to be a paleontologist to look at the two specimens above and kinda wonder whether they are actually the same (or whether the bottom one can be said to be much of anything really). Sometimes both specimens were recovered as eucacopines (Holmes et al., 2013), sometimes only one was recovered as a eucacopine (Schoch, 2012), sometimes Eucacopinae didn't exist (Maddin et al., 2013), sometimes the composite was recovered as a eucacopine (Schoch & Sues, 2013), and sometimes the composite was recovered as a dissorophine (Liu, 2018). So basically every possible result short of it being recovered as a non-dissorophid! The Centennial StateThe new specimen that we report here was collected from what's known as the Placerville locality by my coauthors, Adam Huttenlocker and Jason Pardo, a few years back. It is not nearly as complete as the other two specimens, but it is well-preserved, enough to show some distinctive features not found in most or all of the other dissorophids. For example, the two bones called the postorbital (right behind the eye) and the supratemporal (a little farther back) usually touch, but here they do not (this is found in two of the species of Cacops as well). The jaw articulation (marked by the quadrate) also sits in front of the level of the back of the skull (marked by the postparietal); this is something found only in Dissorophus and Scapanops. So there is actually quite a lot of information in this little skull despite it being at best 25% complete! Our phylogenetic analysis, which combines two previous matrices (it was originally intended for a larger sample), finally recovers not just the original two specimens, but also this third one as a proper clade (i.e. what you expect if they really do all belong to the same species)! The statistical support is not very good though, and it's quite possible that a future study could find a different result. Dissorophid phylogenetics remains very much in flux outside of just Conjunctio (something that I'm working on right now). COVID addendum: Lest someone think that all of us are superhumans who pumped out this paper in the pandemic, it was mostly completed before the pandemic really set in (we submitted the first version in May 2020). Jason and I in particular as current and recently graduated PhD students have really slowed down in putting new work into the pipeline during the pandemic, which I think is important to note since a lot of people are really struggling and should not be concerned with their perceived relative productivity! Refs
Inner workings: some fun (and not so fun) insights into demographics of temnospondyl research2/9/2021
Temnospondyls are a weird bunch of animals, which naturally means that the people who work on them are also a weird bunch. I've been kicking around some ideas for a blog post looking at the demographics of temnospondyl research for a while, both out of a general interest and with an eye towards diversity (or the lack thereof) in early tetrapod research, which is particularly niche among vertebrate paleontology. Meant to do it in 2020, but a lot of things obviously happened that delayed it to now... Where to find the temnos (Part 1)Where do temnospondyls "live" today? It's probably not that surprising that my semi-arbitrary list of the institutions with the most temnospondyl material are in predominantly western, northern hemisphere countries. This is obviously not a full list; there are many other institutions in the U.S. with decent temnospondyl holdings (KUVP - Lawrence, KS; OMNH - Norman, OK), especially ones with large quantities of material from single localities (TTU - Lubbock, TX; PPHM, Canyon, TX), as well as a few international museums like BPI (Johannesburg), MGUH (Copenhagen), and GSI (Kolkata), but the ones mapped above hold a lot of the world's temnospondyl holotypes and best specimens. Where to find the temnos (Part 2)Now how does this stack up to where temnospondyls are actually found (i.e. where they actually lived)? The most obvious takeaway is that temnospondyls are all over the world (they're also known from Antarctica, but that's not mapped on here since it's not a sovereign country). If you sort of compare the two maps, there's pretty good alignment between the top temnospondyl-holding institutions and the countries with the most temnospondyl fossils. However, there is one small (geographically speaking) outlier: the U.K. This brings me to the next part of this pseudo-study - are temnospondyls frequently the subject of "helicopter research?" Helicopter scienceThe concept of "helicopter science," where researchers from predominantly western countries in N. America and western Europe figuratively (but sometimes literally) helicopter into an underdeveloped country without comparable research or academic infrastructure, collect fossils, and then publish them without local collaboration in the authorship team, is fairly recognizable today. This can realistically happen in almost any discipline, and there are plenty of good articles out there on the internet (see here, here, and here), but in paleontology, it's particularly common in Africa (excluding South Africa to some degree) and South America. Helicopter research is hardly ahistorical - it is a barely disguised arm of the long history of colonialism, rooted in the exploitation of human and natural resources of underdeveloped regions and populaces, and it remains a huge problem in paleontology because many historical collections were made by European countries in places like Africa and now continue to benefit from the research and public interest valuations of those fossils. Repatriation and other means of reconciliation remain sticky subjects (e.g., Germany's holding of the sauropod Brachiosaurus from Tanzania; source and source). Note that this is different from repatriation of explicitly illegally held fossils, like those smuggled out of Brazil (source) or Mongolia (source); many of the historical collections were made through legal, museum-sponsored expeditions (admittedly at a time when fossil regulations were near non-existent in most countries, perhaps a convenient thing). If I put the previous map of major temnospondyl hotspots side-by-side with a tiered map showing major repositories of temnospondyl fossils (in the blues; white only indicates very few to no fossils, not absolutely nothing), the U.K. should pop out as best a small set of islands can. France punches a little above its weight, but nothing like the U.K. So let's talk about the U.K. The sun never sets on the British empireThe U.K. has obviously punched way above its geographic weight in global politics for centuries, and vertebrate paleontology is no exception; other than maybe Germany, it produces more vert paleontology research output than any other European country. Now unsurprisingly, there are not very many fossils in general on the isles; islands are not usually major sources of fossils. But the U.K. holds a remarkable number of not just fossils, but holotypes, from other countries, including a number of ones with fairly well-developed paleontology infrastructure. Basically all of these exports are housed at the Natural History Museum (NHMUK, formerly the British Museum of Natural History [BMNH]). The list of holotypes housed there is fairly impressive (left) compared to the domestic holdings (right):
Anyone with a fuzzy sense of world history will probably notice that most of these exported holotypes come from countries that were major colonies of the British empire (evidently American independence warded off any prospective future attempts to take most of our fossils). In fact, the only continent that the Brits don't have temnospondyl fossils from is Antarctica, and there are barely any from there to begin with. This changes the discussion a little bit though - the wide-ranging holdings of the U.K. is really just straight-up colonialism rather than helicopter research, which is a term mostly used with respect to contemporary research. Helicopters didn't even exist when most of this material was collected (mainly 18th and 19th centuries). As far as I know, no one in the U.K. is globetrotting to collect more temnospondyls (or has for several decades), although Andrew Milner made an entire career out of working on the extensive holdings of non-domestic, European temnospondyls (especially from the Czech Republic) at the NHMUK. I won't even pretend to know anything about the history of Czech paleontology, but there is a massive amount in the Narodní Muzuem in Prague, so it's not like the country was exclusively pillaged by other countries. What the heck, let's do France too: France of course had a much smaller colonial reach by the time that paleontology had taken off as a field. However, they cornered the market on northern Africa (politically and paleontologically), and the MNHN has extensive material from Morocco in particular (four holotypes). The French also outperformed the Brits in Madagascar, holding a number of trematosaur holotypes.
I'll map the U.S. as well, but I'm not even going to begin listing holotypes; there are more than a dozen dissorophid holotypes alone, both from and housed in the U.S. If I had to make a crude estimate, there's probably close to 100 holotypes from the U.S. The main American institutions with foreign holdings are the AMNH and the UCMP. The U.S. probably never developed major forays into other countries with the intent of bringing back fossils since there are already so many in the U.S. I'd be that there are some loan swaps with other countries that aren't described in the literature, but no need to get greedy. South Africa clearly got farmed by literally everyone though. Now in all of this, I want to point out that non-holotype holdings from another country could be swaps - you give me something I don't have, and I'll give you something that you don't have. This happens a lot between museums and is a great way to diversify their holdings and exhibits. For example, there's one Lydekkerina specimen at the Royal Ontario Museum in Toronto, but I'm pretty sure nobody from that museum went down to South Africa just to collect one Lydekkerina... The Natural History Museum in London notes on their website that a bunch of their German material was donated by Herman Credner. Let's come back to the original question of helicopter research. Most of the historical work is direct colonialism, but what about nowadays? To be frank, there isn't that much opportunity simply because nobody's getting a million-dollar grant just to go into a relatively unexplored (paleontologically speaking) region and dig up specifically temnospondyls. Brazil remains largely worked by Brazilians, or at least other Latin Americans (e.g., Eltink et al., 2016; Pacheco et al., 2017; Azevedo et al., 2019; Dias et al., 2020), with minimal involvement from North America or Europe. Asia outside of India has never produced many temnospondyl fossils, most of which are published by local researchers (e.g., Liu, 2016, 2018; Chakravorti & Sengupta, 2018; Mukherjee et al., 2019; Rakshit & Ray, 2020). So Africa is the only other region with the potential for helicopter research, and even that hasn't produced a lot of new material. The track record there is pretty good for local collaboration. There is a single Carboniferous temnospondyl occurrence on the entire continent - the micromelerpetid Branchierpeton saberi from Morocco (Werneburg et al., 2019); the last author on that paper is affiliated with Chouaib Doukkali University (Morocco). Two very fragmentary bones were also reported from the mid-late Permian of Morocco by Steyer & Jalil (2009); Jalil is at the Muséum national d'Histoire naturelle in Paris, one of the major repositories of material from Morocco, but he remains affiliated with Université Cadi Ayyad. South Africa was mostly worked by South Africans historically, and they haven't excavated substantial new material in a while. The only other substantial contemporary study of African temnospondyls is the set of papers reported Nigerpeton and Saharastega from Niger; three of the four papers include local collaborators from Niger (Sidor et al., 2005; Damiani et al., 2006; Steyer et al., 2006), and the fourth is a single-authored festschrift contribution (Sidor, 2013). Perhaps most crucially, the material is reposited at local institutions. A secret life abroadWhat about trafficking of temnospondyls? Laws regarding fossil ownership are famously variable between countries and usually lacking in those without established infrastructure for collections and research. Brazil is the most recent country re-emerge in the news over the dinosaur Ubirajara, a fossil exported to Germany under rather dubious circumstances that suggest a fair bit of impropriety at the bare minimum (Science, NatGeo). Eagle-eyed readers might have noticed that Brazil is one of the countries with specimens housed in the Natural History Museum in London - this material is of Prionosuchus plummeri, the largest known temnospondyl and in fact includes the specific material used to get the approximately 9 m length estimate. The paper describing it, Cox & Hutchinson (1991), indicates the material was collected in collaboration with Llewellyn Price, one of the most famous Brazilian paleontologists, in 1970 and 1972. This falls within the gray area between 1942, when Brazil requires governmental approval for export, and 1990, when the government bans permanent export; obviously at the time, this was not considered an ethical issue, and the paper makes no mention of the export process.
Behind the scenesNow that we've looked at things from a fairly coarse scale, what about the individuals who actually do the research? To get an idea of this, I built out a dataset of publications in two time intervals, 2000-2009 and 2010-2020 (both inclusive). This is mostly grabbed off of Google Scholar, although I got ones that aren't indexed there if I knew about them. Some general guidelines I was using:
Who's whoLet's start by looking at the most productive temnospondyl workers. Note that to keep these graphs somewhat concise (there's several dozen unique first authors from 1999 to 2009 and almost 100 from 2010 to 2020), I'm using an arbitrary minimum cutoff of 6 publications (authorship position irrelevant). I'll mostly show graphics related to this particular subset, but it isn't a referendum on what I think about either publications or authors that aren't captured here because of the cutoff, and it does not mean that everyone who is listed here is a temnospondyl "expert," either as self-defined or as perceived by others. That being said, many of the names on here are the first people that the average paleontologist would think of for temno-related matters. The point of these graphs is just to show numerical production. Citation count or other measures of impact take longer to data-mine and get complicated when you can't use a single search engine to get measures for every study, not to mention that 11-year sampling bins are not as good. I think the plots are pretty self-explanatory, and they show some interesting patterns. Firstly, two German dudes, Rainer Schoch and Florian Witzmann, have dominated the temnospondyl literature (note that their true net contribution is overestimated by these plots because they frequently co-author papers, at least 10 on a quick count). Country trends will be discussed next, so I won't get into them too much here, but there's a few other areas to comment on that aren't clear from the plots themselves.
As an aside, it might look weird that the 1999-2009 interval has more publications, but what this really reflects is a declining "market share" of the entire set of publications by this arbitrarily defined subset that I'm using here. Both of these subsets represent a majority of the total output of each time interval, but it's much more substantial for the 1999-2009 interval (63.5% for 1999-2009; 52.1% for 2010-2020).Between 1999 and 2009, there were only 66 unique first authors; that number went up by essentially 50% to 97 unique first authors between 2010 and 2020, and as a result, a smaller proportion of the total papers were produced by the subset of the most productive workers. Whether this increase in distinct workers reflects increased interest or just increased access can't be addressed here. Now let's back out and check the entire dataset - is it possible that women are overrepresented below the cutoff of >5 publications that I defined here (i.e. that women are either less likely to be first authors or that they produce fewer first-authored publications than men; not mutually exclusive)? Indeed, the proportion of women as first-authors is higher in the overall dataset for both time intervals (17.3% and 25.2%, respectively) than in the subset of the most productive workers (12.6% and 16.8%). Indeed, between 1999 and 2009, there were 16 unique women who first-authored a paper, but only three of those published more than five papers in that time (women were 24.2% of all unique first-authors); between 2010 and 2020, there were 28 unique women first-authoring a paper, and also only three of those published more than five papers in that time (women were 28.8% of unique first-authors). By country of affiliation of lead authorNow let's back out and take a look at how things break down by where the primary listed affiliation of the first author is physically based for all of these studies.
'The single genius'Science is often fixated on this concept of single geniuses (coincidentally mostly men) where we elevate these really well-known figures like Einstein, Hawking, Darwin, Newton, etc. as incredible geniuses who essentially accomplished their major findings on their own. This has drawn a lot of criticism in recent years because it often totally obfuscates the actual history of discovery, whether in Crick & Watson's overshadowing of Rosalind Franklin, or in the more everyday aspects of scientific research where PIs claim credit for student work. Some reads here (BBC), here (New Republic), and here (Vox). People don't have to be scientists or Nobel laureates to have this title figuratively bestowed upon them (or to place it upon themselves); we are all cultured to think of the people at the top as the 'masterminds' or the 'big brains' behind a complex machine, whether in film (directors, producers) or in science (PIs).
The TLDR is that there is a definite trend toward low authorship teams, though I obviously don't have comparative data to assess how that stacks up against other groups of tetrapods. Now there's plenty of ways to speculate on why temnospondyl research is skewed towards small research teams. One, of course, is that certain workers do perceive themselves in this 'genius' vein and either feel that additional collaborators have nothing to contribute or will in fact slow them down. That's sort of pessimistic, but it's inherently true that there is only one limiting actor in a single-authored project, which could be good or bad depending on how you work and what you're working on. Re: the latter, there might be less of a perceived need for collaboration in descriptive papers, which remain the bulk of temnospondyl analyses - all you need is one well-traveled person who has seen a lot of the relevant material in theory (this is not a personal advocacy for avoiding collaboration in descriptive papers). A third factor is that some of the most productive workers are based at museums with good temnospondyl holdings (e.g., Fröbisch, Lucas, Schoch, Steyer, Witzmann) - that means that not only may they not have to go anywhere to look at specimens, there's also a smaller chance that authorship associated with another curator granting access to collections is involved. One other possibility is trying to avoid COI (conflict of interest) for a certain period of time. I don't know how it works in Europe, but here in North America, frequent collaborators are usually banned from reviewing your grants ('frequent' for NSF is defined as any collaboration within the last year, graduate supervision, and a few other activities). The same thing was a problem for me when trying to find an external examiner for my PhD defence (most universities require that you have someone not affiliated with the university) - Toronto requires someone who has themselves graduated a PhD student and who has not collaborated with you or your advisor in the last 5 years! I can certainly appreciate that it is already hard enough getting temnospondyl reviewers for papers (which have far looser COI rules, which are really more like "suggestions"), and I think that this may also influence how people go about forming research teams. If I had to guess though, the main reason why temnospondyl teams are small is because the temnospondyl community is also small. To pass muster, you gotta find at at least two and maybe three or four reviewers to green light the paper. That's a lot (I have problems getting more than two a lot of the time), so any potential collaborator is also a potential reviewer - put them on the paper and now you've knocked down your reviewer pool. I have definitely had non-temnospondyl workers review some of my papers, and I don't think that's they were the top choices either. Mathematically, needing at least two reviewers per paper means some people get asked to review a lot, and for any given reason, someone might not be able to do it. You might also just really like somebody as a reviewer - I have certain people who I find to be very good reviewers (=/= short review necessarily) - so regardless of whether that person is also a great scientist, you might leave them off the team unless you think that they are essential (hard to argue for essentiality in most descriptive work). TLDR
|
About the blogA blog on all things temnospondyl written by someone who spends too much time thinking about them. Covers all aspects of temnospondyl paleobiology and ongoing research (not just mine). Categories
All
Archives
January 2024
|